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INTRODUCTION TO SOFTWARE SAFETY

• What is Software Safety?

• What is its relationship to other software qualities?



Real-Time Safety-Critical Systems

When computers are used to control complex,
mechanical devices or physical processes such as:

time-critical

Air Traffic

Nuclear Fission

Hospital Patient Monitoring

Defense and Aerospace Systems

where a run-time error or failure can result in death, injury, loss of

property, environmental harm.
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Facts about accidents:

Most accidents originate in system interfaces. Caused by com-

plex, unplanned interactions between components of the system.

• Accidents often involve multiple failures of different components.

System accidents intimately intertwined with comple_ty and

coupling.
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Goals in building complex systems:

• attaining mission (functional correctness)

• preventing undesired events while attempting to achieve

the mission (safety, security)

• minimizing cost

Focusing on safety separately from other goals:

• Allows for conflict resolution and decisions about
tradeoffs

• Allows differential handling of erroneous states

• Provides discipline and procedures for looking for errors

• Focuses attention and assigns responsibility

• Allows measuring a_nd ensuring safety separately from

other goals



Implications and Challenges for Software Engineering

Requirements for software safety analysis and verification being

included in contracts and by government licensing agencies.

• New standards for safety-critical software.

• Natronal and international working groups

Safety involves multiple areas of traditional software research

along with safety engineering.

reliability

security

?



SYSTEM RELIABILITY: considers problems concerned with

ensuring system will perform a required task or mission for a specified

time in a specified environment.

SYSTEM SAFETY: considers problems ofnot causing an accident

in the process.

• Usually many system failures which can occur without causing

a mishap

• Sometimes even conflicts between functional and safety

requirements



Relationship between Safety and Security

• Both involve threats

• Both are negative requirements

• Both are system qualities

• Both may require high levels of assurance

Are they the same?

advertent vs. inadvertent actions



BASIC SYSTEM SAFETY PRINCIPLES

• What is System Safety?

• System Safety Analysis Techniques

]b



SYSTEM SAFETY ENGINEERING

The application of scientific, management, and engineering principles

to ensure adequate safety within the constraints of operational

effectiveness, time, and cost throughout the system life cycle.

HAZARD ANALYSIS

• Identify hazards

• Assess risk

HAZARD CONTROL

• Eliminate hazards

• Minimize hazard occurrence or effects

Document and track hazards and progress made toward resolu-

tion of associated risk.
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Preliminary Hazard A nalyni_ (PHA):

• identifysafety-criticalareas and functions

• identify and evaluate hazards in terms of severity and likelihood

• identifysafety design criteriato be used

Results used in:

developing system safetyrequirements

preparing performance and design specifications
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COMPLETE FAILURE

MAXIMUM TOLERABLE FAILURE---_-_'

MAXIMUM ANTICIPATED FAILURE_

MINIMUM ANTICIPATED FAILURE---_'-

TOTAL SUCCESS _(

_[---- ACCIDE N T

(DEATH OR CRIPPLING INJURY)

•-q{-_--- ACC I DE N T

(CAR DAMAGED: NO PERSONAL INJURY
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--_--ARRIVES AT 9:00

-"_(--WINDSHIE LO WIPERS INOPERATIVE

(LIGHT RAIN)

-'_-_TR AF F IC CONGESTION

'_'_ARRIVES AT 8:45

LOST HUBCAP

_--WINDSHIELD WIPERS INOPERAT1V_

(CLEAR WEATHER)

w

)-_[---.---ARRIVES AT 8'30
(NO DIFFICULTIES WHATSOEVER)
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MIL-STD-882B. System Safety Program
Requirements:

Category I.Catastrophic: may cause
death or system loss.

Category If.Critical:may cause severe

injury,severeoccupationalillness,or
major system damage.

Category Ill.Marginal:may cause minor
injury,minor occupational illness,or
minor system damage.

Category IV. Negligible:willnot result

in injury,occupationalillness,or sys-
tem damage.

NHB 5300.4 (1.D.1), a NASA document:

Category I. Loss of life or vehicle (in-
eludes loss or injury to public).

Category 2. Loss of mission (includes
both postlaunch abort and launch de-
lay sufficient to cause mission scrub).

Category 3. All others.

DOE 5481.1 (nuclear):
Low. Hazards that present minor on-site

and negligible off-site impacts to peo-
ple or the environment.

Moderate. Hazards that present consid-
erable potential on-site impacts to peo-
ple or environment, but at most only
minor off-site impacts.

High. Hazards with potential for major
on-site or off-site impacts to people or
the enviromment.



HAZARD PROBABILITY

Described in terms of occurrences per unit of time, events, popu-

lation, items, or activity.

Derive from modelling or from historical safety data from similar

systems.



Subsystem Hazard A naluaia (SSHAj/:

Identify hazards z_ociat_ with design of subsystems including:

component failure model

criticalerroneous human inputs

hazards resultingfrom functionalrelationshipsbetween

components of the subsystem

Determine how operating or failure modes of components affects

safety of the system.

Identify necessary actions to determine how to eliminate or

reduce riskof identified_ h_z4f¢is.

r

Evaluate design with respect to safety requirements of subsystem

specification.



System Hazard Ana!.ysiJ (SHA):

@ Identify ha_k_rdscreated by interfacesbetween subsystems or by

system operating as a whole including human errors.

• Examines allsubsystem interfacesfor

(a) compliance with safety criteriain system requirements

specification.

(b) possiblecombinations of independent, dependent, and

simultaneous hazardous events or failures,including

failuresof controlsand safety devices,that could

cause hazards.

(c)degradation of safety of system from normal operation of

system and subsystems.
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Operating and Supp.ort Hazard Analysis (OSHA):

identify hazards and risk reduction procedures during all phases

of system use and maintenance.

• especiallyexamines hazards created by man/machine interface.

: /s



ANALYSIS TECHNIQUES

Design reviews and walkthroughs

Checklists

Fault Tree Analysis (FTA)

Event Tree Analyb';_(or Incident Sequence Analysis)

Hazard and OperabilityStudies (HAZOP)

Random Number Simulation Analysis (RNSA)

Failure Modes and E_ects Analysis (FMEA)

.. Jq



T1

P _> u_n va"

_,_d o_,_" =,,¢,=e _ehavtdr.

aMd ccaie or e.,,_,bu_e.
,'/.

• .20



SYSTEM SAFETY DESIGN PROCEDURES

GOAL: Eliminate identifiedhazards or, ifnot possible,reduce associ-

ated riskto an acceptable level.

Order of precedence forapplying safety design techniques:

(1) Intrinsicallysafedesign

(2) Prevent or minimize occurrence of hazards.

e.li._onitori_g

automatic control(automatic pressure reliefvMves,

speed governors,limit-levelsensing controls)

lockouts

Iockins

interlocks

(3) Control hazard ifitoccurs using automatic safety devices.

detection of hazards

fail-safe designs

damage control

containment

isolation of hazards

(4) Provide warning devices, procedures, and training to help person-

nel react to hazard.

.. ,Zi
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OUTPUT O

I I
iNPUT A iNPUT 8

Figure IV-2. The OR-Gate

It is important to understand that causality never passes through an OR-gate. That
is, for an OR-gate, the input faults are never the causes of the output fault. Inputs to
an OR-gate are identical to the output but are more specifically defined as to cause.

Figure IV-3 helps to clarify this point.

VALVE IS

FAILE0

CLOSED

VALVE IS

CLOSEO OUE

TO HAROWARE

FAILURE

VALVE IS

CLOSE0 0UE

TO HUMAN

ERROR

VALVE IS

CLOSEO OUE

TO TESTING

Figure IV-3. Specific Example of the OR-Gate

• ,,2t_



OUTPUT O

! i
INPUT A INPUT 8

Figure IV-5. The AND-Gate

In contrast to the OR-gate the AND-gate does specify a causal relationship

between the inputs and the output, i.e., the input faults collectively represent the

cause of the output fault. The AND-gate implies nothing whatsoever about the

"ecedents of the input faults. An example of an AND-gate is shown in Figure IV-6.

A failure of both diesel generators and of the battery will result in a failure of all

onsite DC power.

DIESEL

GENERATOR 1

IS FAILED

ALL ONSITE

DC POWER IS

FAILED ]

OIESEL

GENERATOR 2

IS FAILED

BATTERY

IS FAILEO

Figure IV-6. Specific l-xample of an AND-Gate



Quantitative modelling using fault trees:

• Attach probabilities to nodes of tree.

• Use boolean algebra to calculate minimal cut sets.

minimal cut set: All unique combinations of events

that can cause the top-level event.



A Sample Software Safety Program

• Software Development Management Responsibilities

• Software Hazard Analysis

• Establishing Software Safety Requirements

• Software Safety Requirements Review

• Software Safety Design Concepts

• Software Design and Recovery Analysis

* Software Safety Design Review

• Code Verification and Validation

• Assessment of Risk

, .1.1 t,



Software Safet_c involves ensuring that the software will execute

within a system context without resultingin unacceptable risk.

Risk is defined in terms of hazard_ -- states of the system that when

combined with certain environmental conditions could lead to a

mishap.

Risk -- f ( Pr [hazardoccurs],Pr [hazard leads to mishap],

Severityof worst potential mishap)

Safety critical software: software which can directly or indirectly

cause or allow a hazardous system state to exist.



GENERAL COMMENTS

@ Safety must be specifiedand designed into software from the

beginning.

Effective safety programs require changes throughout entire

software life cycle.

• Enhancing reliabilityisnot enough.

Th_ success of any software safety efforthinges on the abilityof

software, system, and safety engineers to cooperate and work

together.



Basic approach adapted from system safety engineering

1) Identify potential software-related hazards

2) Control hazards

Analysis

Start from hazard and work backward

to see if and how could occur.

• Design

Passive Control

Active Control

3c9



Philosophy and Goals

Building a bridge between software engineering and system

engineering.

• Use modeling and analysis for understanding and predic-
tion

A systems approach
hardware engineers,
assurance groups.

-- well-defined interfaces with
systems engineers, and quality

Focus on failures with the most serious consequences

Layers of protection

-. 31



Layers of Protection

Software safety verification
and analysis

i

Design to protect against hazards

Human or hardware protection
external to computer

. 32.



• Integrate into usual software development process

Activitiesspan the lifecycle.

Catch errors early

throughout development.

verification distributed

Information derived from early activities(modeling

and analysis)isused to drivethe designand coding.

• Combine formal and informalapproaches

Static analysis using formal proofs and structured

walkthroughs

Dynamic analysisto provide confidencein the models

and assumptions used in the staticanalysis.

33
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CAVEATS

• No magic potions

• Nothing is absolutely safe

• No techniques are perfect

• Risk elimination vs. risk displacement

• Nothing is safe under all conditions

35



MANAGEMENT

Management commitment to :afetlt i: the most crucial requirement

for achieving it.

degree of safety achieved is directly dependent upon emphasis

given to it.

@ goals of safety can be accomplished only with the support of

managemenl.

Need to:

• set policy and define goals for software safety

• delegate responsibility

• grant authority

• fix accountability

@ clearly delineate lines of authority, cooperation, and administra-

tion

3_



General responsibilitiesof software safety management and personnel:

• Participationin early planning of the safetyprogram

Continual close interactionwith system safety group during the

lifeof the program

Participationin allaspects of the software development activities

to ensure that software hazards are eliminated or controlledto an

acceptable level.

• 37



software-related

hazards

software-safety

constraints

software

uirements

high-level design

design constraints

low-leveldesign

code constraints

code

Software Hazard Analysis

• Model the software/system interface

• Analysis to identify software-related hazards

• Integrate with system safety analysis

engineering models and analysis.

and system

39



SOFTWARE HAZARD ANALYSIS

1) If operates "correctly," will any hazardous states result?

2) If there are failures, will hazards result?

Single failures?

Multiple failures?



Fault Tr_e Analysis

A graphic model of the various paralleland sequential combina-

tions of faults(or system states)that willresultin the occurrence

of a predefined undesired event.

Events can involve hardware failures, human mistakes, software

design faults, computer hardware failures, etc.

Start with list of system hazards (PHA). Assume hazard has

occurred, and work backward to determine set of possible causes.

Preconditions described with either AND or OR relationships.

4b
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PETRI NET MODELS

Have developed analysis procedures to:

O identify hazards and safety-critical single and multiple

failure sequences

determine software safety requirements including timing
requirements

• analyze the design for safety and fault tolerance

guide in the use of failure detection and recovery pro-
cedures

"" 4A
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e

critical state: path to high-risk and possibly low-risk states as

well as path to only low-risk states.

Algorithm:

Start with high-risk states. Generate those one step back and see

if can go forward from them (Look forward one).

Work back to first potential critical state (state with two succes-

sors) and eliminate bad path.

• What if state not really reachable?

• What if not really a critical state?

• How do we know what states to start with. i.e. what about miscel-

laneous conditions?

_5



Modify design to disallow traversal of undesired path

change design- e.g. add interlocks, lockouts, etc.

r .

• add timing constraints



t 1

t 7

Fizure 4c. A Petri Net Graph with an Interlock (I)
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_7



Time Petri Nets

Add two times to each transition:

minimum required enabling time

maximum time before transition must fire

Adding time makes analysis more difficult, but since
interested in worst case behavior:

1) Derive non-time teachability graph

2) Then use this to determine timing requirements

_g



Adding Failures to the Analysis

Types of control failures:

a required event that does not occur

an undesired event

an incorrect sequence of required events

two incompatible events occurring simultaneously

timing failures in event sequences

exceeding ma.,dmum time constraints between events

failing to ensure minimum time constraints between events

durationaI failures

49



tI

Figure 5a.Desired Event tI Does Not Occur

tI

Figure5b. Undesired Event t1 Occurs

5c_



Important safety properties of a design:

Recoverable

Fault Tolerant

Fail Safe



faulty state: every path to it from the initial state contains a failure

transition.

Recoverable: after the occurrence of a failure, the control of the pro-

cess is not lost, and in an acceptable amount of time, it will return to

normal execution.

1) the number of faulty states is finite

2) there _are no terminal faulty states

3) there are no directed loops containing only faulty states

4) the sum of the max times on all paths from the failure transition

to a correct state is less than a predefined acceptable amount of

time.



correct behatnor path: a path in the failure reachability graph from

the initial st:__e to a final state which con*ains no failure transitions.

Fault Tolerant Process:

l) a correct behavior path isa subs,_.quenceof every path from the

initialstate to any terminal state.

2) the sum of the maximum times on allpaths is lessthan a pre-

defined acceptable amount of time.

Fail-Safe: allpaths from a failureF contain only low-riskstates.

,53
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Included in Mil-Std-882B (System Safety) and AF Hand-

book on Software Safety

• Used experimentally on some real projects

Never meant to be practical -- changing to a better
model.

•" 5_,



External Interaction Model

Goal is to interface between system engineering and software

engineering.

EIM includes the software behavior and assumptions about
the behavior of the environment within which the software

will operate.

(

Uses:

• To verify system correctness (software requirements
satisfy system requirements) including satisfying con-
straints.

To minimize effects of system requirements and design
changes on software through appropriate design.

To determine and specify
software to violations of

(robustness).

appropriate
environmental

responses by
assumptions

Cannot just "scale-up" techniques for specifying interface
between software components.

51



Can use model to determine whether the components
(including the software) of the larger system working
together exhibit certain properties.

Partial responsibility for ensuring some properties

may be assigned to software.

Their existence may be affected by behavior of
software.

Static analysis of properties vs. dynamic control during exe-
cution

In both cases, must prepare system under develop-
ment, systematically from the outset, to satisfy them.

Safety is an emergent or non-hierarchical property.

Appears only when system components considered as
a whole not in individual components.

Accidents most often occur in the interfaces of sys-
tems- a consequence of undesired and unhandled
interactions between components.

C
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Statecharts:

• extension of finite-state machines to include:

hierarchy
modularity
orthogonality
generalized transitions

• Provides graphical language with rigorous semantics.

• But doesn't have:

communication other than broadcast

straightforward notation for assigning
attributes to inputs and outputs

probabilities
analysis techniques defined on it.



Use Statecharts to describe state information of all com-

ponents and add:

1) Input and output exchange declarations

input exchange chart:

value(Y) E ValuRange(Y)

time(Y) e TimeRange(Y)

timetype(Y) E (continual, periodic, S-R}

source(Y) e C

capacity

exceptions

output exchange chart:

v.alue(X) e ValuRange(X)

time(X) E TimeRange(X)

timetype(X) E {continual, periodic, S-R}

destination(X) E C
load



2) Rules and mappings for these exchanges

Make explicit the assumptions and allowed interactions
according to given, implied, and derived constraints.

Static checking for inconsistencies between matched

exchanges

Source for dynamic checking of inconsistencies between
real state of environment and computer model of it.

nal

As external state changes, inputs provide current
status and feedback information to update inter-

model.



Two types of safety analysis defined on EIM model:

Safety analysis assuming no failures- provide confidence

that if system performs as specified, will not reach a
hazardous state.

backwards reachability analysis based on
critical states

Analysis with failure -- fault tree analysis generated

directly from model's state representation.

Determine erroneous software states that can

lead to system hazards.



TESTBED:

TCAS II: Traffic Alert and Collision Avoidance System

Family of airborne devices functioning independently
of the ground-based ATC system.

Provides traffic advisories to assist pilot in avoiding
intruder aircraft.

Provides resolution advisories (recommended escape

maneuvers) in a vertical direction to avoid conflicting
traffic.

Communicates with intruder aircraft TCAS systems,

transponders on intruder aircraft, pilot, and ground-
based radar beacon system.

Used by airline aircraft and larger commuter and
business aircraft.

We will provide a system requirements specification
and a safety analysis of the specification.

_3



ESTABLISHING SOFTWARE SAFETY REQUIREMENTS

Goal: Rewriting software hazards identified by the SHA as software

requirements

Need to consider:

• what system shall not do

means for eliminating and controlling damage is case of an
accident

,ways in which software can failsafelyand to what extent failure

istolerable.

L#



SOFTWARE SAFETY REQUIREMENTS REVIEW

Goal: identify critical requirements, missing requirements, require

ments that may conflict with safety.

Participants: software engineers

system engineers

applicationengineers

safetyel;gineers

Results used to: improve software requirements specification

update Software Hazards List

update detailed safety design criteria

test and evaluation criteria

Techniques: Ad hoc techniques

Real Time Logic

•. 65



software-related

hazards

software-safety
constraints

software

uirements

I design constraints

code constraints

high-leveldesign

low-level design

code

Requirements Analysis:

AnMyze softwsre requirements for robustness,lack of

ambiguity, consistencywith system requirements

• Verify consistency with safety constrs/nts.

• Identify conflicts and tradeoffs.



What is Correctness?

A system is a set of component working together to achieve

some common objective or function.

Three components of system requirements:

1) Basic function or objective

2) Constraints on operating conditions

Define range of conditions within which system may
operate while achieving its objective.

Limit the set of acceptable designs.

Arise from several sources:

quality considerations
physical limitations onequipment
process characteristics
safety considerations

3) Prioritized quality goals to:

Judge which alternative design is best

Resolve tradeoffs between conflicting requirements.



Two aspects of specification correctness:

• Implementation correctness

Constructed component
specification.

satisfies its requirements

Specification must distinguish behavior of desired

software from any other, undesired program that
might be designed.

Requires specification to be sufficiently unambiguous.

( • System correctness

Component behavior, if implementation satisfies its
requirements, together with specified behavior of the
other components will satisfy the system require-
ments.

(



Approaches to finding errors in requirements specifications:

• Prototyping

• Executable specifications

• Scenarios

• . Informal reviews

• Formal modeling and analysis

Build model of software behavior and its interface

with other components and analyze to ensure
behavior and properties of model match desired

behavior and properties.
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The RSM is denoted as a seven-tuple (E, Q, qo, Pr, Po, _, _t) where:

• IE is the set of input/output variables, Z and O,

• Q is the set of states of the control component C.

• q0 E Q is the initial state of C; the software is in this state before startup.

• PT is the set predicates on the values and timing of the inputs (Z). They t
state change in the RSM.

• Po is the set of predicates on the outputs (0)

• 6 is the state transition function Q x PT to Q.

( is the trigger-to-output relationship Q × PT to Po.

7/
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Normal Operation.

- II(=p&r)=nOa=.=jr,

4O
ORIGINAL PAGE IS

OF POOR QUALITY
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The Startup Sequence.

39 O_tG!N/_I. PAGE'_fS



J

Input/output Variables

States {_ / _0

Startup and Shutdown
Modes

Trigger Predicates

Tautology Requirements

Essential Value Assumptions

Essential Timing Assumptions

Properly bounded ranges

Capacity and load

Mimimum arrival rates, etc.

_5



Criterion 6.1 Every state must have a behavior (transition) defined for

every possible input. Formally,

VI, q3q,,p : (6(q,p) = ql) A (p E PTt)

where I E E, q, ql E Q and Prt is defined as in section 4.

Criterion 6.2 The logical OR (v) of the input predicates on the transitions

out of any state must form a tautology:

where the p,s are the input predicates leading out of the state
of interest.

Criterion 6.3 Every state must have a behavior (transition) defined in case

there is no input for a given period of time, i.e., a timeout.

Criterion 6.4 The RSM must to be deterministic.Let pi representthe

input predicateon the ith transitionout of a state.Then

deterministicbehaviorisguaranteed by:

ViVj (i # j) =_ "(Pi A pj )



@

@

Output Predicates _o

Environmental capacity considerations

Data Age

Latency

Trigger-to-Output Relationship

Graceful Degradation

Hysteresis

l_esponsiveness an.d Spontaneity (Feedback)
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$ Transitions _"

Basic lteachability

Recurrent Behavior

Reversibility

Reachability of Safe States

Path Robustness

Constraint Analysis



Criterion 9.3 Reversibility of an operation z (performed in a state q,) by

an operation y (performed in a state q E Q_) required a path

between q= and a state belonging to Q_. Formally,

3q3s: s) = q) ^

where q E Qy.

R.s_uarMf65

Criterion 9.5 Soft and hard-failuremodes should be eliminated for all

hazard-reducingoutputs. Formally,letQ, and Qv be the

setsof stateswhere actionsz and y are performed. The loss

of the abilityto receive/ isa soft-failuremode forthe paths

from action z to action y if["

3qVql, s[(_(q,s) = q,) =_ (-_@(s,)V IT)]

where q E Q, and ql E Q_.

The loss of the ability to receive I is a hard-failure mode if['

VqVql, s[(6(q,s) = ql) =_ (",_b(s,) V I T)]

where q E Qs and ql E Qv.
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Future Goals:

• Extend criteria on RSM

• Define analysis procedures for the criteria

• Demonstrate by applying to TCAS

Transactions on Software Engineering, March 1991.



SAFE SOFTWARE DESIGN PRINCIPLES

• Preventing Hazards

• Detecting and Recovering from Hazards

• Example

Sl



SOFTWARE SAFETY DESIGN CONCEPTS

ALalysis and verification alone not enough because:

• techni,tues are error-prone

cost may be prohibitive

elimination of all hazards may require too severe a performance

penalty

Two general principles:

(1) design should provide leverage for certification efl't-rt

(2) avoi_ adding complexity

Two categories:

• . Prevention of hazards through software desi_

(tends toinvolve reduction of functionality or design freedom)

• Detection and tr_atment at run-time

(difficult and unreliable)



PREVENTING I_kZARDS THROUGH SOFTWARE DESIGN

General goals: make software intrinsicallysafeso that software faults

and failurescannot lead to system hazards.

General approach: reduce amount of software that affectssafetyand

change as many potentiallycriticalfault__nto non-criticalfaultsas

possible.

• Design to limitactionsof software

modularization

data access limitations

separate criticalfrom non-criticalfunctions

firewalls

hierarchicaldesign

• Authority limitationto protect criticalfunctions and data

• Minimize hazardous statesor time in them

Use software interlocksto ensure sequencing or prevent hazardous

outputs

• Protect against hardware failures



DETECTION AND TREATMENT AT RUN-TIME

Detection:

assertions

acceptance tests

external monitors

watchdog timers

voting

Mechanisms not as much_ of a problem as formulating the cl'.ecks



Recovery:

• Safety recovery routinesneeded when:

unsafe state detected externally

determined that software cannot provide required oatput

within a prescribed time limit

continuation of regular routine would lead to a hazard if

no intervention

Backward adequate ifcan be guaranteed that software faultswill

be detected and successfulrecovery completed before fault aff_:t

external state.

• Forward recovery usually alsoneeded

robust data structures

dynamic alterationof flow of control

reconfigUration

ignoring singlecycle errors

reduced function or fail-safemodes

• Design for a safe-side



Fail-Safe Design

Desiga system to have a safe-side: state that is always reachable

from any other state and that is always safe.

• Often has performance penalties.

@ Besides shutting down, may need to take some action to avoid

harm.

• Safety system itself may cause harm.

May be intermediate safe states with limited functionality, espe-

dally in systems where shutdown itself would be hazardous.

• Reeonfiguration or _iynamic alteration of control is a form of par-
tial shutdown.



2 level structure:

TOP LEVEL

less important governing functions

supervisory, coordination, management functions

separate processor

loss cannot endanger turbine nor cause it to shutdown

BASE LEVEL

secure software core that can detect significant

failures of hardware

self checks of:

sensibility of incoming signals

whether processor functioning correctly

failure of self-check leads to reversion to safe

state through fail-safe hardware.

_7



No interrupts except for fatal store fault (nonmaskable)

-- timing and sequencing defined

-- more rigorous and exhaustive testing

Uses polling

all messages unidirectional
--- no recovery or contention protocols required

--. higher level of predictability

State table defines:

scheduling of tasks

self-check criteria appropriate under particular conditions

t
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SOFTWARE DESIGN AND RECOVERY ANALYSIS

Two goals:

(1) Identify safety-critical items.

(2) Identify self-test, fault-tolerance, _ud fail-safe facilities needed for

safety-critical items.



Sa/ttlt- Critical Ittms:

software processes, data items, or states whose inadvertent

occurrence, failure to occur when required, occurrence out of

sequence, occurrence in combination with other functions, or

erroneous value can be involved in development of a hazard.

Includes erroneous program states and data items that could

cause a hazard even iffunction or algorithm iscorrect.

Identify through backward flow analysis on top-level design to

locate critical paths and data.

a,4vual procedures

Software Fault Tree Analysis

Uses Hierarchy

• Used for:

feedback to software and system design

e.g. minimizing critical items

isolating critical items

designing fault tolerance facilities

planning load shedding and reconfiguration



Recovery Analysis

Evaluate software and hardware failures for potential effect on

safety-critical items.

identify self-test, fault-tolerance, and faii-Lxfe facilities needed for

critical items.

Results:

• Identification of assumptions about failures and undesired events

Fault-tolerance and fail-safe guidelines for rest of software

development

• Evaluation of safety design requirements

Description of planned safety aspects of the design including

prevention_detect.ion, and treatment of hazards.

Evaluation of planned safety aspects of design including fault

detection and recovery facilities planned for each critical item.



SOFTWARE SAFETY DESIGN REVIEW

As part of regular design review:

(1) verify that safety requirements implemented iu detailed design

(2) verify that software safety desip criteria and fault tolerance

guidelines implemented in design

(3) produce a final safety test recommendations report.



VERIFICATION OF SAFETY

• What is it?

• Software Fault Tree Analysis

_3



CODE VERIFICATION AND VALIDATION

If rest of program followed, need for most costly procedures will

be minimized.

Walkthroughs and formal verification (e.g. Software Fault Tree

Analysis) needed only on modules determined to be so critical

that testing or other assurance procedures alone will not suffice to

ensure acceptable risk.

Need to verify that detailed feature related to safety-critical items

and fault-tolerance facilities have been correctly implemented.

Need to verify that assumptions and models upon which analyses

have been based are correct.



lteri_i ¢a_to_o or9
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Software Fault Tree Analysis

A symbolic logic diagram which shows

relationship (AND or OR) between an

and one or more contributory causes.

cause and effect

undesired event

• A Systems Tool

• Related to formal axiomatic program verification BUT:

specification derived from system requirements

include consideration of hardware failures,

environmental conditions, human errors

proof by contradiction

q_



(1) A := ,r(y); (2) B :ffi X- 5.0; (3) if A > B then Sub1; end if;

Figure 8: Sample Assignment Statements

SublcaUed[

I

caused A

I. (1) caus_ /
F(Y) > X- 5.0

Figure g: Fault Tree for Assigrm_ent St_tement_



procedure call
caused the event

lparamecer values I procedure failinz J¢,_ the event] _,_._dthe _ent !

Figure I0: Fault Tree for a Procedure Call

j 1
then part 1caused event

i

else part !:aused event

,.I., I f L I
I cond. true ] ! then-par_ [ [ cond. f_C_ e_e-,_
I pfior to IF • caused event . toI

Figure 11: Fault Tree for an-If-Then-Eke Statement
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event caused by
while statement

I statement [

not executedJ

event prior
to while

i
cond. false }bdore while

cond. true
bet'ore while

l
statement ]executed N times

I
J [Nth iterationeauzes event

Figure 12: Fault Tree for a Wh_le Statement

!

event caused by I
cue statement }

I
cond. 1

true

Iwhen clause 1 Iwhen clause n

I I I F

I
else part ]

caused event I

Figure 13: Fault Tree for a C_e Statement
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Software faulttreehas two possiblepatterns:

(1) A contradiction is found.

(2) Fault tree runs through code and out to controlled system or its
environment.

.. Ioo



FIREWHEEL Example

Used SFTA to analyze the flight and telemetry program for a U.C.

Berkeley spacecraft.

• Mission: to sample electric fields in the earth's magnetotail.

• Critical Failure Event: ripping wire booms off spacecraft.

Cost: needed to examine 12% of code (out of approximately 300

lines of Pascal code), took two man days

Results: A criticalscenario detected that was undiscovered dur-

ing a thorough testand evaluationby an independent group.

• Iol
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fails J

[

I OBRS fails I

interrupts
d£sabled

indefin£t_ely

1

_*Ze statement
[in v_ fails ,[-

I

{_wsz, o.c'_
always [

i

• 64 at sun int.

l

resets W'DCSS

@
ORIGINAL PAGE IS
OF POOR OUAL|TY

sun

pulse
2

LASTP <.64 at Jsun £nterrupt

,gDCSS incr

< 64 times

less than 64

msecends pass

'_-Figure 9b. Boom Length Too Low (cont£nued)
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Software Fault Tree Analysis useful to:

identify software faults potentially leading to accidents

OR "verify" (increase confidence) they do not exist

• provide information for testing

• provide guidance for content and placement of run-time

assertions (fault detection)

provide information on fail-safe requirements
u

.. Io5



ASSESSMENT OF RISK

Certificationof system partly based on system safetyreport including

• De._criptionof procedures used to ensur_ig software safety

• Results of software analyses

• Quantification of risk.

I t)b



Physical devices vs. software

• They "fail" differently: failure vs. design errors

No historical reliability and safety assessments on stan-

dard designs for software.

Repair involves redesign rather than replacement by

equivalent part.

(

q[
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Software Reliability Models

Estimation of reliability model parameters made from
measurements of time between failures during testing.

Most of controversy rests on assumptions models make
about software. Some typical ones:

-- Software faults, and thus the failures they may cause,

are independent of each other.

Inputs for software are selected randomly from an

input space.

Test-input space is representative of the operational

input space.

Software under test constitutes a functional unit to

which no new software modules are added during test-

ing.

Each software failure is observed.

-- Faults are corrected without introducing new ones.

-- All errors are of equal severity.

-- Each fault contributes equally to the failure rate.

-- No major revisions or changes in staffing or aspects of

development or maintenance environment.

/a!



Even if believe models, cannot exercise enough during
testing to provide very low failure probabilities with high
confidence.

Doug Miller:

To assure failure rate less than 10 -9 failures/hour,

must test for more than 109 hours and experience no

failures (110,000 years of testing).

To be 99% confident that failure probability less than
10 -9 requires 4.6 x 109 test cases without failure

(525,000 years of testing if unit of time hours and

assume reasonable amount of time to execute a test

case).

Io?



CONCLUSIONS

Standard reliability and fault tolerance techniques will not solve

the safety problem for the present.

• A new attitude required:

Looking at what you do not want software to do along with

what you want it to do.

Assumi'ng things will go wrong.

New procedures and changes to entire software development pro-

cess will be necessary.

Special software safety analysis techniques are needed.

Design techniques, especially eliminating complexity, will

help.



FIREWHEEL Example

Used SFTA to analyze the flight and telemetry program for a U.C.

Berkeley spacecraft.

• Mission: to sample electric fields in the earth's magnetotail.

• Critical Failure Event: ripping wire booms off spacecraft.

Cost: needed to examine 12% Of code (out of approximately 300

lines of Pascal code), took two man days

Results: A critical scenario detected that was undiscovered dur-

ing a thorough test and evaluation by an independent group.
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Software Fault Tree Analysis useful to:

• identify software faults potentially leading to accidents

OR "verify" (increase confidence) they do not exist

• provide information for testing

provide guidance for content and placement of run-time

assertions (fault detection)

• provide information on fail-safe requirements
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ASSESSMENT OF RISK

Certificationof system partly based on system safety reportincluding

• De._criptionof proceduree used to ensur_ software safety

• Results of software analyses

• Quantificationof risk.

ORIGINAL PAGE IS
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Physical devices vs. software

• They "fail" differently: failure vs. design errors

No historical reliability and safety assessments on stan-

dard designs for software.

Repair involves redesign rather than replacement by

equivalent part.

(
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Software Reliability Models

Estimation of reliability model parameters made from

measurements of time between failures during testing.

Most of controversy rests on assumptions models make
about software. Some typical ones:

Software faults, and thus the failures they may cause,
are independent of each other.

Inputs for software are selected randomly from an

input space.

Test-input space is representative of the operational
input space.

Software under test constitutes a functional unit to

which no new software modules are added during test-

ing.

Each software failure is observed.

Faults are corrected without introducing new ones.

r

All errors are of equal severity.

Each fault contributes equally to the failure rate.

w No major revisions or changes in staffing or aspects of

development or maintenance environment.

/61



Even if believe models, cannot exercise enough during

testing to provide very low failure probabilities with high
confidence.

Doug Miller:

To assure failure rate less than 10 -9 failures/hour,

must test for more than 109 hours and experience no

failures (110,000 years of testing).

To be 99% confident that failure probability less than

10 -9 requires 4.6 x 109 test cases without failure

(525,000 years of testing if unit of time hours and

assume reasonable amount of time to execute a test

case).



CONCLUSIONS

Standard reliabihty and fault tolerance techniques will not solve

the safety problem for the present.

• A new attitude required:

Looking at what you do not want software to do along with

what you want it to do.

Assuming things will go wrong.

New procedures and changes to entire software development pro-

cess will be necessary.

Special software safety analysis techniques are needed.

Design techniques, especially ehminating complexity, will

help.
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